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CALCULATION OF PRESSURE ON AN AIRFOIL CONTOUR

IN AN UNSTEADY SEPARATED FLOW

UDC 532.5: 533.6D. N. Gorelov

Simple formulas for calculating the pressure and the total hydrodynamic reactions acting on an ar-
bitrarily moving airfoil are derived within the framework of the model of plane unsteady motion of
an ideal incompressible fluid. Several vortex wakes may be shed from the airfoil owing to changes in
velocity circulation around the airfoil contour. Cases with nonclosed and closed contours are consid-
ered.
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In some problems, the calculation of hydrodynamic reactions acting on an airfoil in an unsteady flow of an
ideal incompressible fluid is rather difficult. The general Sedov’s formulas [1] are not used; therefore, the calculation
of the total hydrodynamic reactions is based on pressure calculations with subsequent integration over the airfoil
contour. In an unsteady flow, the pressure is determined by the Cauchy–Lagrange integral, which contains the
derivative of the velocity potential with respect to time. The calculation of this component of pressure is the most
time-consuming procedure, because it is necessary to take into account the motion of all points of the contour
and the discontinuities of the velocity potential caused by shedding of vortex wakes from the airfoil. The formulas
proposed for calculations, however, are not always correct, especially in considering separated flow regimes [2].

The general formulas for calculating pressure and total hydrodynamic reactions acting on the contour (non-
closed or closed) in an unsteady flow in nonseparated and separated flow regimes are derived in the present work.

1. We consider a plane unsteady flow of an ideal incompressible fluid around a nonclosed or closed contour
L in the Cartesian coordinate system xy. At infinity, the fluid moves with a velocity v∞, and the contour moves
with a velocity U(x, y, t) [(x, y) ∈ L]. Fluid motion outside the contour and vortex wakes induced by changes in
velocity circulation around the contour is assumed to be potential. Then, the hydrodynamic pressure p(x, y, t) at
the points of the contour L is determined by the Cauchy–Lagrange integral, which can be written as [3]

p − p∞ = −ρ
(δϕ

δt
+

1
2

[(vs − ves)2 − v2
e − v2

∞]
)
, v2

e = v2
es + v2

en. (1)

Here p∞ is the pressure at infinity and δ/δt is the operator of differentiation with respect to time t at a point
moving with a transport velocity ve (for the contour points, ve = U); the subscripts s and n refer to the tangent
and normal components of velocity, respectively.

We assume that the solution of the initial-boundary problem of the flow around the contour, which determines
the intensity of the vortex layer γ(s, t) modeling the contour L, is known. To calculate the pressure at the points of
the nonclosed and closed contours L in the nonseparated and separated flow regimes, we use the Cauchy–Lagrange
integral (1).

In the case of the flow around a nonclosed contour, it is reasonable to calculate the pressure difference
Δp(s, t) = p−(s, t) − p+(s, t) at a contour point (x, y) ∈ L with an arc coordinate s counted from the leading edge.
Let us consider a nonseparated unsteady flow around the nonclosed contour with the vortex wake Lw shed from the
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Fig. 1. Flow around a nonclosed contour: (a) nonseparated flow; (b) separated flow.

trailing edge only (Fig. 1a). In this case, the pressure difference Δp acting on the contour L in the normal direction
n is

Δp(s, t) = −ρvrs(s, t)γ(s, t) − ρ
dΓ(s, t)

dt
, Γ(s, t) =

s∫

0

γ(s, t) ds, s ∈ [0, l]. (2)

Here γ(s, t) = v−s (s, t)−v+
s (s, t), v−s and v+

s are the limit velocities of the fluid approaching the contour L, vrs(s, t) =
v0s(s, t)−ves(s, t) is the relative velocity of the fluid moving along the contour L, and v0s(s, t) = [v−s (s, t)+v+

s (s, t)]/2.
Note that formula (2) is well known.

On the trailing edge of the nonclosed contour, we have Δp(l, t) = 0. In the case of a nonseparated flow, the
pressure difference at the point s = 0 turns to infinity, because there is an asymptotic of the vortex-layer intensity
near the leading edge: γ(s, t) = A(t)/

√
s. This feature of the flow near the leading edge generates a suction force

[1] applied to the leading edge and acting in the direction opposite to the vector of the tangent to the contour L

(see Fig. 1a). The tangent component of the suction force [5] is

Qs(t) = −πρ

4
lim
s→0

[sγ2(s, t)] = −πρ

4
A2(t). (3)

Let us denote the projections of the total hydrodynamic force onto the coordinate axes by Rx and Ry; the
moment of hydrodynamic forces with respect to the origin is denoted by M . By definition, we have

Rx(t) + iRy(t) = i

l∫

0

Δp(s, t) eiΘ(s,t) ds + Qs(t) eiΘ(0,t),

M(t) = Re
( l∫

0

Δp(s, t)z(s, t) e−iΘ(s,t) ds
)
− Qs(t) Im

[
z(0, t) e−iΘ(0,t)].

(4)

Here the parameters Δp and Qs are determined by Eqs. (2) and (3); Θ(s, t) is the angle of inclination of the tangent
to the contour L at a point with a complex coordinate z(s, t) = x(s, t) + iy(s, t).

Let us now consider a separated flow around the nonclosed contour L with vortex wakes Lw1 and Lw2

shed from both edges of the contour (Fig. 1b). Velocity circulation in passing over the vortex wake Lwk in the
anticlockwise direction is denoted by Γwk(t); the intensities of vortices and the velocity of vortex shedding are
denoted by γwk(0, t) and wk(t) (k = 1, 2), respectively. The discontinuity of the velocity potential at a point of the
contour L with an arc coordinate s is determined by the formula

ϕ−(s, t) − ϕ+(s, t) = Γ(s, t) + Γw1(t), s ∈ (0, l). (5)

With allowance for Eq. (5) and the relation dΓw1(t)/dt = w1(t)γw1(0, t), Eq. (2) for the pressure difference
at the points of the nonclosed contour in the separated flow regime acquires the form

Δp(s, t) = −ρ
(
vrs(s, t)γ(s, t) +

dΓ(s, t)
dt

+ w1(t)γw1(0, t)
)
, s ∈ (0, l). (6)

It follows from Eq. (6) that the pressure difference on the ends of the contour L is Δp(0, t) = Δp(l, t) = 0. Indeed,
as the point s = 0 is approached, the velocity circulation is Γ(0, t) = 0, the tangent component of the relative
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Fig. 2. Flow around a closed contour: (a) nonseparated flow; (b) separated flow.

velocity of the fluid is vrs(0, t) = −w1(t) (the velocity vector of vortex shedding from the leading edge is directed
opposite to the vector of the tangent to the contour), and γ(0, t) = γw1(0, t) by virtue of the continuous transition
of the vortex layer from the contour L to the vortex wake Lw1. As the trailing edge is approached, from which the
vortex wake Lw2 is shed, the pressure difference Δp also vanishes. This follows from the relations [4]

dΓ
dt

= −
2∑

k=1

dΓwk(t)
dt

= −
2∑

k=1

wk(t)γwk(0, t), vrs(l, t)γ(l, t) = w2(t)γw2(0, t).

Several vortex wakes can be shed from the contour L; in particular such a situation occurs if the contour
L has corner points. Let s∗1, . . . , s∗Nw be the arc coordinates of the points from which the vortex wakes are shed.
Then, for 0 < s < s∗m+1 (1 � m � Nw − 1), Eq. (5) for the velocity potential discontinuity can be written as

ϕ−(s, t) − ϕ+(s, t) = Γ(s, t) +
m∑

k=1

Γwk(t),

and the expression for the pressure difference at the same points has the form

Δp(s, t) = −ρ
(
vrs(s, t)γ(s, t) +

dΓ(s, t)
dt

+
m∑

k=1

wk(t)γwk(0, t)
)
. (7)

Note, in contrast to Eq. (2), Eqs. (6) and (7) are derived here for the first time. In the separated flow
regime, no suction force is generated; hence, the total forces and the moment acting on the contour are determined
by Eqs. (4) where Qs = 0.

2. Let us consider an unsteady flow around a closed contour L (Fig. 2). The arc coordinate is counted
from the leading edge. Let l and l1 be the length of the contour L and the arc coordinate of the trailing edge,
respectively. We divide the contour L into L1 (0 < s < l1) and L2 (l1 < s < l). The hydrodynamic pressure
on these contours is denoted by p1(s, t) and p2(s, t), respectively. The contour L is modeled by the vortex layer
γ(s, t) = v−s (s, t)− v+

s (s, t) [4] (v−s = Us and v+
s = vs are the velocities of the fluid on the contour L). The velocity

potential ϕ at the points of the contour L is related to vs as

∂ϕ(s, t)
∂s

= vs(s, t), vs(s, t) = Us(s, t) − γ(s, t). (8)

Let only one vortex wake Lw be shed from the trailing edge (point s = l1) of the contour L (Fig. 2a).
Integrating Eq. (8), we obtain

ϕ(s, t) = ϕ(0, t) − Γ(s, t), s ∈ [0, l1), Γ(s, t) = −
s∫

0

vs(s, t) ds,

ϕ(s, t) = ϕ(l1 + 0, t) − Γ(s, t) + Γ(l1, t), s ∈ (l1, l].
(9)

In passing through the vortex wake Lw, the velocity potential has a discontinuity:

ϕ(l1 − 0, t) − ϕ(l1 + 0, t) = Γw(t), Γw(t) =
∫

Lw

γw(σ, t) dσ. (10)

439



The velocity potential at the point s = 0 is continuous: ϕ(0, t) = ϕ(l, t). From here, with allowance for Eqs.
(9) and (10), there follows the Kelvin theorem on conservation of velocity circulation over a closed “fluid” contour:
Γ(t) + Γw(t) = 0.

At the points of the contour L, we have

(vs − ve)2 = γ2, v2
e = U2,

δϕ

δt
=

∂ϕ(0, t)
∂t

− ∂Γ(s, t)
∂t

, 0 � s < l1,

δϕ

δt
=

∂ϕ(0, t)
∂t

− ∂Γ(s, t)
∂t

− dΓw(t)
dt

, l1 < s � l.

Substituting these expressions into Eq. (1), we obtain

p1(s, t) = −ρ
(1

2
γ2(s, t) − ∂Γ(s, t)

∂t

)
+ f(s, t), 0 � s < l1,

p2(s, t) = −ρ
(1

2
γ2(s, t) − ∂Γ(s, t)

∂t
− dΓw(t)

dt

)
+ f(s, t), l1 < s � l, (11)

f(s, t) = p∞ − ρ
(∂ϕ(0, t)

∂t
− 1

2
[U2(s, t) + v2

∞]
)
.

In the case of a nonseparated flow around the contour L, the intensity of the vortex layer on the leading
edge is continuous: γ(0, t) = γ(l, t), and the velocity circulation is Γ(0, t) = 0, Γ(l, t) = Γ(t). With allowance for the
Kelvin theorem, Eq. (11) implies that the pressure on the leading edge also changes continuously: p1(0, t) = p2(l, t).
In the vicinity of the trailing edge (s = l1), we have

p1(l1 − 0, t) = −ρ
(1

2
γ2(l1 − 0, t) − ∂Γ(l1, t)

∂t

)
+ f(l1, t),

p2(l1 + 0, t) = −ρ
(1

2
γ2(l1 + 0, t) − ∂Γ(l1, t)

∂t
− dΓw(t)

dt

)
+ f(l1, t).

Hence, the pressure discontinuity on the trailing edge is

p1(l1 − 0, t) − p2(l1 + 0, t) = −ρ
(1

2
[γ2(l1 − 0, t) − γ2(l1 + 0, t)] +

dΓw(t)
dt

)
= 0

because [4]

γ(l1 − 0, t) + γ(l1 + 0, t) = γw(0, t), [γ(l1 − 0, t) − γ(l1 + 0, t)]/2 = −w(t).

Let us now consider a separated flow around the closed contour. Let the vortex wakes be shed from the points
s = s∗1 and s = s∗2 (Fig. 2b). In passing through the vortex wakes, the velocity potential becomes discontinuous
ϕ(s∗k − 0, t) − ϕ(s∗k + 0, t) = Γwk(t). With allowance for this fact and the relation dΓwk(t)/dt = wk(t)γwk(0, t),
Eqs. (11) for calculating the hydrodynamic pressure p(s, t) in the case of a separated flow around the closed contour,
similar to Eq. (6), takes the form

p1(s, t) = −ρ
(1

2
γ2(s, t) − ∂Γ(s, t)

∂t
− w1(t)γw1(0, t)

)
+ f(s, t), s∗1 < s < s∗2,

p2(s, t) = −ρ
(1

2
γ2(s, t) − ∂Γ(s, t)

∂t
− w1(t)γw1(0, t) − w2(t)γw2(0, t)

)
+ f(s, t), (12)

s∗2 < s < l + s∗1, f(s, t) = p∞ − ρ
(∂ϕ(s∗1 − 0, t)

∂t
− 1

2
[U2(s, t) + v2

∞]
)
.

It follows from Eq. (12) that the pressure does not experience discontinuities at the points of vortex-wake shedding:

p1(s∗1 + 0, t) − p2(l + s∗1 − 0, t) = 0, p1(s∗2 − 0, t) − p2(s∗2 + 0, t) = 0.

Note that Eqs. (11) and (12) transform to Eqs. (2) and (6) in the limit case of an infinitely thin airfoil. To
prove this statement, we have to bear in mind that the airfoil in the limit case transforms to a nonclosed contour,
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where the intensity of the vortex layer equals the sum of the corresponding intensities of the vortex layer on the
contours L1 and L2.

The total hydrodynamic reactions acting on the closed contour are determined by integration of pressure
over the contour L.

Thus, formulas are derived, which allow fairly accurate calculations of the pressure and total hydrodynamic
reactions acting on the airfoil contour in an unsteady flow of an ideal incompressible fluid in nonseparated and
separated flow regimes. The flows around a nonclosed contour and a closed contour are considered. The fluid
flow outside the contour and the vortex wakes is assumed to be potential. The pressure calculations involve the
intensities of the vortex layers modeling the contour and the vortex wakes determined by solving an appropriate
nonlinear initial-boundary problem.
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